Performance Optimization

Techniques and patterns for optimizing OSpec project performance

performance optimization scalability

Performance Optimization

Comprehensive guide to optimizing performance across all aspects of OSpec projects, from specification design to deployment.

Specification-Level Optimizations

Efficient Agent Task Design

# ❌ Large, monolithic tasks
tasks:
  - id: "build-entire-application"
    estimated_hours: 40
    description: "Build complete web application with all features"

# ✅ Smaller, parallelizable tasks
tasks:
  - id: "setup-project-structure"
    estimated_hours: 2
    parallelizable: true
    
  - id: "implement-authentication"
    estimated_hours: 8
    depends_on: ["setup-project-structure"]
    
  - id: "build-user-interface"
    estimated_hours: 12
    depends_on: ["setup-project-structure"]
    parallelizable_with: ["implement-authentication"]

Smart Resource Allocation

# Dynamic resource scaling
resources:
  scaling_strategy: "demand_based"
  
  profiles:
    development:
      cpu_cores: 2
      memory_gb: 4
      auto_scale: false
      
    production:
      cpu_cores: 8
      memory_gb: 32
      auto_scale: true
      scale_metrics: ["cpu", "memory", "requests"]
      
  optimization:
    memory_management: "aggressive"
    cpu_scheduling: "fair"
    io_priority: "high"

Dependency Optimization

# Minimize dependency conflicts
stack:
  dependency_strategy: "minimal"
  
  core_only: true
  optional_dependencies:
    - name: "analytics"
      lazy_load: true
      condition: "production_only"
      
  dependency_caching:
    enabled: true
    cache_duration: "24h"
    shared_cache: true

Build and Compilation Optimizations

Parallel Build Configuration

# Build optimization settings
build:
  parallelization:
    enabled: true
    max_workers: 4  # Number of CPU cores
    task_splitting: "automatic"
    
  caching:
    build_cache: true
    dependency_cache: true
    incremental_builds: true
    cache_strategy: "layered"
    
  optimization:
    minification: true
    tree_shaking: true
    code_splitting: true
    compression: "gzip + brotli"

Asset Optimization

# Asset pipeline optimization
assets:
  images:
    formats: ["webp", "avif", "jpg"]
    quality: 85
    lazy_loading: true
    responsive_images: true
    
  fonts:
    subset: true
    preload_critical: true
    swap_strategy: "swap"
    
  css:
    critical_css: "inline"
    non_critical: "async"
    unused_css_removal: true
    
  javascript:
    code_splitting: "route_based"
    lazy_loading: "component_based"
    polyfill_strategy: "selective"

Database Performance

Query Optimization

# Database performance configuration
database:
  performance:
    connection_pooling:
      min_connections: 5
      max_connections: 100
      idle_timeout: 300
      
    query_optimization:
      prepared_statements: true
      query_plan_caching: true
      index_hints: true
      
    caching:
      query_cache: true
      result_cache: true
      cache_ttl: 3600  # 1 hour
      
  monitoring:
    slow_query_log: true
    slow_query_threshold: 1000  # ms
    explain_analyze: true

Database Schema Optimization

-- Example optimized schema patterns
-- Use appropriate indexes
CREATE INDEX CONCURRENTLY idx_users_email_active 
ON users(email) WHERE active = true;

-- Partial indexes for common queries
CREATE INDEX idx_orders_status_recent 
ON orders(status, created_at) 
WHERE created_at > NOW() - INTERVAL '30 days';

-- Composite indexes for multi-column queries
CREATE INDEX idx_products_category_price 
ON products(category_id, price DESC);

-- Use appropriate data types
ALTER TABLE products 
ALTER COLUMN price TYPE DECIMAL(10,2);  -- Instead of FLOAT

Read Replicas and Sharding

database:
  scaling:
    read_replicas:
      enabled: true
      replica_count: 2
      read_write_split: "automatic"
      
    sharding:
      strategy: "range_based"  # or hash_based
      shard_key: "user_id"
      shard_count: 4
      
    partitioning:
      table_partitioning: true
      partition_strategy: "date_range"
      partition_interval: "monthly"

Application-Level Performance

Caching Strategies

# Multi-level caching configuration
caching:
  levels:
    application:
      type: "in_memory"
      size_mb: 512
      ttl_seconds: 3600
      eviction_policy: "LRU"
      
    distributed:
      type: "redis"
      cluster_enabled: true
      persistence: "rdb"
      
    cdn:
      provider: "cloudflare"
      edge_caching: true
      cache_rules:
        static_assets: "1 year"
        api_responses: "5 minutes"
        dynamic_content: "30 seconds"

Async Processing

# Asynchronous processing setup
async_processing:
  message_queue:
    provider: "redis"  # or rabbitmq, kafka
    workers: 4
    concurrency: 10
    
  background_jobs:
    - name: "email_sending"
      queue: "notifications"
      retry_attempts: 3
      
    - name: "image_processing"
      queue: "media"
      timeout_minutes: 10
      
  event_processing:
    pattern: "publish_subscribe"
    event_sourcing: true
    async_handlers: true

Memory Management

// JavaScript/Node.js memory optimization examples
// Efficient object creation
const objectPool = {
  pool: [],
  get() {
    return this.pool.pop() || {};
  },
  release(obj) {
    Object.keys(obj).forEach(key => delete obj[key]);
    this.pool.push(obj);
  }
};

// Stream processing for large datasets
const stream = require('stream');

class OptimizedProcessor extends stream.Transform {
  constructor() {
    super({ objectMode: true, highWaterMark: 16 });
  }
  
  _transform(chunk, encoding, callback) {
    // Process in chunks to avoid memory spikes
    setImmediate(() => {
      const processed = this.processChunk(chunk);
      callback(null, processed);
    });
  }
}

// Connection pooling
const pool = require('generic-pool');

const dbPool = pool.createPool({
  create: () => createDatabaseConnection(),
  destroy: (connection) => connection.close()
}, {
  max: 50,           // Maximum connections
  min: 5,            // Minimum connections
  acquireTimeoutMillis: 3000,
  idleTimeoutMillis: 30000
});

Network and API Performance

HTTP Optimizations

# HTTP performance configuration
http:
  compression:
    enabled: true
    algorithms: ["gzip", "brotli"]
    min_size_bytes: 1024
    
  keep_alive:
    enabled: true
    timeout_seconds: 65
    max_requests: 100
    
  http2:
    enabled: true
    server_push: true
    multiplexing: true
    
  headers:
    cache_control: "public, max-age=31536000"  # 1 year for static
    etag: true
    last_modified: true

API Response Optimization

# API performance patterns
api:
  response_optimization:
    pagination:
      default_page_size: 20
      max_page_size: 100
      cursor_based: true  # More efficient than offset
      
    field_selection:
      enabled: true
      allow_sparse_fieldsets: true
      
    response_compression:
      json_compression: true
      response_streaming: true
      
  rate_limiting:
    requests_per_minute: 1000
    burst_capacity: 100
    rate_limiting_headers: true

CDN and Edge Optimization

# CDN configuration for performance
cdn:
  provider: "cloudflare"  # or aws_cloudfront, fastly
  
  edge_locations:
    global_coverage: true
    regional_failover: true
    
  optimization:
    minification:
      html: true
      css: true
      javascript: true
      
    image_optimization:
      auto_format: true  # WebP, AVIF based on browser
      quality_adjustment: "automatic"
      responsive_images: true
      
    brotli_compression: true
    http3_support: true
    
  cache_policies:
    static_assets: "1 year"
    dynamic_content: "5 minutes"
    api_responses: "private, no-cache"

Infrastructure Performance

Load Balancing

# Load balancer configuration
load_balancing:
  algorithm: "least_connections"  # or round_robin, ip_hash
  
  health_checks:
    enabled: true
    interval_seconds: 10
    timeout_seconds: 5
    unhealthy_threshold: 3
    healthy_threshold: 2
    
  session_affinity:
    enabled: false  # Stateless is better for scaling
    
  connection_draining:
    enabled: true
    timeout_seconds: 300

Auto-scaling Configuration

# Intelligent auto-scaling
auto_scaling:
  metrics:
    - name: "cpu_utilization"
      target: 70
      weight: 0.4
      
    - name: "memory_utilization"
      target: 80
      weight: 0.3
      
    - name: "request_rate"
      target: 1000
      weight: 0.3
      
  scaling_policies:
    scale_up:
      cooldown_seconds: 300
      min_step: 1
      max_step: 5
      
    scale_down:
      cooldown_seconds: 900  # Longer cooldown for down-scaling
      min_step: 1
      max_step: 2
      
  predictive_scaling:
    enabled: true
    forecast_horizon_hours: 24
    schedule_based: true

Container Optimization

# Container performance optimization
containerization:
  base_image: "alpine"  # Smaller base images
  
  optimization:
    multi_stage_builds: true
    layer_caching: true
    unused_dependencies: "remove"
    
  resource_limits:
    memory_limit: "2Gi"
    cpu_limit: "1000m"
    memory_request: "1Gi"
    cpu_request: "500m"
    
  startup_optimization:
    init_containers: true
    readiness_probe:
      initial_delay_seconds: 10
      period_seconds: 5
    liveness_probe:
      initial_delay_seconds: 30
      period_seconds: 10

Monitoring and Profiling

Performance Monitoring

# Comprehensive performance monitoring
monitoring:
  application_performance:
    apm_enabled: true
    tracing: "distributed"
    profiling: "continuous"
    
    metrics:
      - "response_time_percentiles"
      - "throughput"
      - "error_rate"
      - "database_query_time"
      - "memory_usage"
      - "garbage_collection_time"
      
  infrastructure_monitoring:
    system_metrics: true
    network_metrics: true
    disk_io_metrics: true
    
  custom_metrics:
    business_metrics: true
    user_experience_metrics: true
    conversion_tracking: true

Performance Testing

# Automated performance testing
performance_testing:
  load_testing:
    tool: "k6"  # or jmeter, artillery
    scenarios:
      - name: "baseline_load"
        virtual_users: 100
        duration: "10m"
        
      - name: "spike_test"
        virtual_users: 1000
        ramp_up: "30s"
        duration: "5m"
        
  stress_testing:
    max_users: 5000
    ramp_up_duration: "5m"
    failure_criteria:
      error_rate: 5  # %
      response_time_p95: 2000  # ms
      
  endurance_testing:
    duration: "2h"
    constant_load: 200
    resource_monitoring: true

Profiling and Optimization

// Example profiling setup (Node.js)
const { performance, PerformanceObserver } = require('perf_hooks');

// Memory usage monitoring
function trackMemoryUsage() {
  const usage = process.memoryUsage();
  console.log({
    rss: Math.round(usage.rss / 1024 / 1024) + 'MB',
    heapUsed: Math.round(usage.heapUsed / 1024 / 1024) + 'MB',
    heapTotal: Math.round(usage.heapTotal / 1024 / 1024) + 'MB',
    external: Math.round(usage.external / 1024 / 1024) + 'MB'
  });
}

// Performance timing
const obs = new PerformanceObserver((items) => {
  items.getEntries().forEach((entry) => {
    console.log(`${entry.name}: ${entry.duration}ms`);
  });
});
obs.observe({ entryTypes: ['measure'] });

// Measure function performance
function measurePerformance(name, fn) {
  return async (...args) => {
    performance.mark(`${name}-start`);
    const result = await fn(...args);
    performance.mark(`${name}-end`);
    performance.measure(name, `${name}-start`, `${name}-end`);
    return result;
  };
}

Performance Budgets

Setting Performance Targets

# Performance budget configuration
performance_budget:
  page_load_time:
    target_ms: 1500
    warning_ms: 1200
    error_ms: 2000
    
  first_contentful_paint:
    target_ms: 800
    warning_ms: 600
    error_ms: 1200
    
  largest_contentful_paint:
    target_ms: 2000
    warning_ms: 1500
    error_ms: 3000
    
  cumulative_layout_shift:
    target: 0.1
    warning: 0.05
    error: 0.25
    
  bundle_sizes:
    javascript_kb: 300
    css_kb: 50
    images_kb: 500
    
  api_response_times:
    p95_target_ms: 200
    p99_target_ms: 500
    error_rate_max: 0.1  # 0.1%

Performance Monitoring Alerts

# Alert configuration for performance issues
alerts:
  performance_degradation:
    - metric: "response_time_p95"
      threshold: 500  # ms
      duration: "5m"
      severity: "warning"
      
    - metric: "error_rate"
      threshold: 1  # %
      duration: "2m"
      severity: "critical"
      
  resource_utilization:
    - metric: "cpu_usage"
      threshold: 80  # %
      duration: "10m"
      severity: "warning"
      
    - metric: "memory_usage"
      threshold: 90  # %
      duration: "5m"
      severity: "critical"

Optimization Checklists

Frontend Performance Checklist

  • Bundle optimization: Code splitting, tree shaking, minification
  • Image optimization: WebP/AVIF formats, lazy loading, responsive images
  • Font optimization: Font display swap, font preloading
  • CSS optimization: Critical CSS, unused CSS removal
  • JavaScript optimization: Async loading, defer attributes
  • Caching: Service workers, HTTP caching headers
  • CDN: Global content distribution
  • Performance monitoring: Core Web Vitals tracking

Backend Performance Checklist

  • Database optimization: Indexing, query optimization, connection pooling
  • Caching: Multi-level caching strategy
  • Async processing: Background jobs, message queues
  • API optimization: Pagination, field selection, compression
  • Memory management: Garbage collection tuning, memory leaks prevention
  • Monitoring: APM, distributed tracing, performance metrics
  • Load testing: Regular performance testing
  • Auto-scaling: Responsive scaling policies

Infrastructure Performance Checklist

  • Load balancing: Proper algorithm selection, health checks
  • Auto-scaling: Multi-metric scaling policies
  • Container optimization: Resource limits, startup optimization
  • Network optimization: CDN, compression, HTTP/2
  • Storage optimization: SSD storage, backup strategies
  • Monitoring: Comprehensive infrastructure monitoring
  • Cost optimization: Right-sizing, reserved instances
  • Disaster recovery: Performance impact assessment

Best Practices Summary

1. Measure First

Always establish baseline measurements before optimizing.

2. Optimize Bottlenecks

Focus on the biggest performance impact areas first.

3. Monitor Continuously

Set up comprehensive monitoring and alerting.

4. Test Performance Changes

Validate that optimizations actually improve performance.

5. Consider User Experience

Optimize for perceived performance, not just raw metrics.

6. Budget for Performance

Set performance budgets and stick to them.

7. Automate Optimization

Use tools and processes to maintain performance over time.


Remember: Premature optimization is the root of all evil, but deliberate performance engineering is essential for scalable applications. Always measure, optimize incrementally, and validate improvements.