Performance Optimization
Techniques and patterns for optimizing OSpec project performance
Performance Optimization
Comprehensive guide to optimizing performance across all aspects of OSpec projects, from specification design to deployment.
Specification-Level Optimizations
Efficient Agent Task Design
# ❌ Large, monolithic tasks
tasks:
- id: "build-entire-application"
estimated_hours: 40
description: "Build complete web application with all features"
# ✅ Smaller, parallelizable tasks
tasks:
- id: "setup-project-structure"
estimated_hours: 2
parallelizable: true
- id: "implement-authentication"
estimated_hours: 8
depends_on: ["setup-project-structure"]
- id: "build-user-interface"
estimated_hours: 12
depends_on: ["setup-project-structure"]
parallelizable_with: ["implement-authentication"]
Smart Resource Allocation
# Dynamic resource scaling
resources:
scaling_strategy: "demand_based"
profiles:
development:
cpu_cores: 2
memory_gb: 4
auto_scale: false
production:
cpu_cores: 8
memory_gb: 32
auto_scale: true
scale_metrics: ["cpu", "memory", "requests"]
optimization:
memory_management: "aggressive"
cpu_scheduling: "fair"
io_priority: "high"
Dependency Optimization
# Minimize dependency conflicts
stack:
dependency_strategy: "minimal"
core_only: true
optional_dependencies:
- name: "analytics"
lazy_load: true
condition: "production_only"
dependency_caching:
enabled: true
cache_duration: "24h"
shared_cache: true
Build and Compilation Optimizations
Parallel Build Configuration
# Build optimization settings
build:
parallelization:
enabled: true
max_workers: 4 # Number of CPU cores
task_splitting: "automatic"
caching:
build_cache: true
dependency_cache: true
incremental_builds: true
cache_strategy: "layered"
optimization:
minification: true
tree_shaking: true
code_splitting: true
compression: "gzip + brotli"
Asset Optimization
# Asset pipeline optimization
assets:
images:
formats: ["webp", "avif", "jpg"]
quality: 85
lazy_loading: true
responsive_images: true
fonts:
subset: true
preload_critical: true
swap_strategy: "swap"
css:
critical_css: "inline"
non_critical: "async"
unused_css_removal: true
javascript:
code_splitting: "route_based"
lazy_loading: "component_based"
polyfill_strategy: "selective"
Database Performance
Query Optimization
# Database performance configuration
database:
performance:
connection_pooling:
min_connections: 5
max_connections: 100
idle_timeout: 300
query_optimization:
prepared_statements: true
query_plan_caching: true
index_hints: true
caching:
query_cache: true
result_cache: true
cache_ttl: 3600 # 1 hour
monitoring:
slow_query_log: true
slow_query_threshold: 1000 # ms
explain_analyze: true
Database Schema Optimization
-- Example optimized schema patterns
-- Use appropriate indexes
CREATE INDEX CONCURRENTLY idx_users_email_active
ON users(email) WHERE active = true;
-- Partial indexes for common queries
CREATE INDEX idx_orders_status_recent
ON orders(status, created_at)
WHERE created_at > NOW() - INTERVAL '30 days';
-- Composite indexes for multi-column queries
CREATE INDEX idx_products_category_price
ON products(category_id, price DESC);
-- Use appropriate data types
ALTER TABLE products
ALTER COLUMN price TYPE DECIMAL(10,2); -- Instead of FLOAT
Read Replicas and Sharding
database:
scaling:
read_replicas:
enabled: true
replica_count: 2
read_write_split: "automatic"
sharding:
strategy: "range_based" # or hash_based
shard_key: "user_id"
shard_count: 4
partitioning:
table_partitioning: true
partition_strategy: "date_range"
partition_interval: "monthly"
Application-Level Performance
Caching Strategies
# Multi-level caching configuration
caching:
levels:
application:
type: "in_memory"
size_mb: 512
ttl_seconds: 3600
eviction_policy: "LRU"
distributed:
type: "redis"
cluster_enabled: true
persistence: "rdb"
cdn:
provider: "cloudflare"
edge_caching: true
cache_rules:
static_assets: "1 year"
api_responses: "5 minutes"
dynamic_content: "30 seconds"
Async Processing
# Asynchronous processing setup
async_processing:
message_queue:
provider: "redis" # or rabbitmq, kafka
workers: 4
concurrency: 10
background_jobs:
- name: "email_sending"
queue: "notifications"
retry_attempts: 3
- name: "image_processing"
queue: "media"
timeout_minutes: 10
event_processing:
pattern: "publish_subscribe"
event_sourcing: true
async_handlers: true
Memory Management
// JavaScript/Node.js memory optimization examples
// Efficient object creation
const objectPool = {
pool: [],
get() {
return this.pool.pop() || {};
},
release(obj) {
Object.keys(obj).forEach(key => delete obj[key]);
this.pool.push(obj);
}
};
// Stream processing for large datasets
const stream = require('stream');
class OptimizedProcessor extends stream.Transform {
constructor() {
super({ objectMode: true, highWaterMark: 16 });
}
_transform(chunk, encoding, callback) {
// Process in chunks to avoid memory spikes
setImmediate(() => {
const processed = this.processChunk(chunk);
callback(null, processed);
});
}
}
// Connection pooling
const pool = require('generic-pool');
const dbPool = pool.createPool({
create: () => createDatabaseConnection(),
destroy: (connection) => connection.close()
}, {
max: 50, // Maximum connections
min: 5, // Minimum connections
acquireTimeoutMillis: 3000,
idleTimeoutMillis: 30000
});
Network and API Performance
HTTP Optimizations
# HTTP performance configuration
http:
compression:
enabled: true
algorithms: ["gzip", "brotli"]
min_size_bytes: 1024
keep_alive:
enabled: true
timeout_seconds: 65
max_requests: 100
http2:
enabled: true
server_push: true
multiplexing: true
headers:
cache_control: "public, max-age=31536000" # 1 year for static
etag: true
last_modified: true
API Response Optimization
# API performance patterns
api:
response_optimization:
pagination:
default_page_size: 20
max_page_size: 100
cursor_based: true # More efficient than offset
field_selection:
enabled: true
allow_sparse_fieldsets: true
response_compression:
json_compression: true
response_streaming: true
rate_limiting:
requests_per_minute: 1000
burst_capacity: 100
rate_limiting_headers: true
CDN and Edge Optimization
# CDN configuration for performance
cdn:
provider: "cloudflare" # or aws_cloudfront, fastly
edge_locations:
global_coverage: true
regional_failover: true
optimization:
minification:
html: true
css: true
javascript: true
image_optimization:
auto_format: true # WebP, AVIF based on browser
quality_adjustment: "automatic"
responsive_images: true
brotli_compression: true
http3_support: true
cache_policies:
static_assets: "1 year"
dynamic_content: "5 minutes"
api_responses: "private, no-cache"
Infrastructure Performance
Load Balancing
# Load balancer configuration
load_balancing:
algorithm: "least_connections" # or round_robin, ip_hash
health_checks:
enabled: true
interval_seconds: 10
timeout_seconds: 5
unhealthy_threshold: 3
healthy_threshold: 2
session_affinity:
enabled: false # Stateless is better for scaling
connection_draining:
enabled: true
timeout_seconds: 300
Auto-scaling Configuration
# Intelligent auto-scaling
auto_scaling:
metrics:
- name: "cpu_utilization"
target: 70
weight: 0.4
- name: "memory_utilization"
target: 80
weight: 0.3
- name: "request_rate"
target: 1000
weight: 0.3
scaling_policies:
scale_up:
cooldown_seconds: 300
min_step: 1
max_step: 5
scale_down:
cooldown_seconds: 900 # Longer cooldown for down-scaling
min_step: 1
max_step: 2
predictive_scaling:
enabled: true
forecast_horizon_hours: 24
schedule_based: true
Container Optimization
# Container performance optimization
containerization:
base_image: "alpine" # Smaller base images
optimization:
multi_stage_builds: true
layer_caching: true
unused_dependencies: "remove"
resource_limits:
memory_limit: "2Gi"
cpu_limit: "1000m"
memory_request: "1Gi"
cpu_request: "500m"
startup_optimization:
init_containers: true
readiness_probe:
initial_delay_seconds: 10
period_seconds: 5
liveness_probe:
initial_delay_seconds: 30
period_seconds: 10
Monitoring and Profiling
Performance Monitoring
# Comprehensive performance monitoring
monitoring:
application_performance:
apm_enabled: true
tracing: "distributed"
profiling: "continuous"
metrics:
- "response_time_percentiles"
- "throughput"
- "error_rate"
- "database_query_time"
- "memory_usage"
- "garbage_collection_time"
infrastructure_monitoring:
system_metrics: true
network_metrics: true
disk_io_metrics: true
custom_metrics:
business_metrics: true
user_experience_metrics: true
conversion_tracking: true
Performance Testing
# Automated performance testing
performance_testing:
load_testing:
tool: "k6" # or jmeter, artillery
scenarios:
- name: "baseline_load"
virtual_users: 100
duration: "10m"
- name: "spike_test"
virtual_users: 1000
ramp_up: "30s"
duration: "5m"
stress_testing:
max_users: 5000
ramp_up_duration: "5m"
failure_criteria:
error_rate: 5 # %
response_time_p95: 2000 # ms
endurance_testing:
duration: "2h"
constant_load: 200
resource_monitoring: true
Profiling and Optimization
// Example profiling setup (Node.js)
const { performance, PerformanceObserver } = require('perf_hooks');
// Memory usage monitoring
function trackMemoryUsage() {
const usage = process.memoryUsage();
console.log({
rss: Math.round(usage.rss / 1024 / 1024) + 'MB',
heapUsed: Math.round(usage.heapUsed / 1024 / 1024) + 'MB',
heapTotal: Math.round(usage.heapTotal / 1024 / 1024) + 'MB',
external: Math.round(usage.external / 1024 / 1024) + 'MB'
});
}
// Performance timing
const obs = new PerformanceObserver((items) => {
items.getEntries().forEach((entry) => {
console.log(`${entry.name}: ${entry.duration}ms`);
});
});
obs.observe({ entryTypes: ['measure'] });
// Measure function performance
function measurePerformance(name, fn) {
return async (...args) => {
performance.mark(`${name}-start`);
const result = await fn(...args);
performance.mark(`${name}-end`);
performance.measure(name, `${name}-start`, `${name}-end`);
return result;
};
}
Performance Budgets
Setting Performance Targets
# Performance budget configuration
performance_budget:
page_load_time:
target_ms: 1500
warning_ms: 1200
error_ms: 2000
first_contentful_paint:
target_ms: 800
warning_ms: 600
error_ms: 1200
largest_contentful_paint:
target_ms: 2000
warning_ms: 1500
error_ms: 3000
cumulative_layout_shift:
target: 0.1
warning: 0.05
error: 0.25
bundle_sizes:
javascript_kb: 300
css_kb: 50
images_kb: 500
api_response_times:
p95_target_ms: 200
p99_target_ms: 500
error_rate_max: 0.1 # 0.1%
Performance Monitoring Alerts
# Alert configuration for performance issues
alerts:
performance_degradation:
- metric: "response_time_p95"
threshold: 500 # ms
duration: "5m"
severity: "warning"
- metric: "error_rate"
threshold: 1 # %
duration: "2m"
severity: "critical"
resource_utilization:
- metric: "cpu_usage"
threshold: 80 # %
duration: "10m"
severity: "warning"
- metric: "memory_usage"
threshold: 90 # %
duration: "5m"
severity: "critical"
Optimization Checklists
Frontend Performance Checklist
- Bundle optimization: Code splitting, tree shaking, minification
- Image optimization: WebP/AVIF formats, lazy loading, responsive images
- Font optimization: Font display swap, font preloading
- CSS optimization: Critical CSS, unused CSS removal
- JavaScript optimization: Async loading, defer attributes
- Caching: Service workers, HTTP caching headers
- CDN: Global content distribution
- Performance monitoring: Core Web Vitals tracking
Backend Performance Checklist
- Database optimization: Indexing, query optimization, connection pooling
- Caching: Multi-level caching strategy
- Async processing: Background jobs, message queues
- API optimization: Pagination, field selection, compression
- Memory management: Garbage collection tuning, memory leaks prevention
- Monitoring: APM, distributed tracing, performance metrics
- Load testing: Regular performance testing
- Auto-scaling: Responsive scaling policies
Infrastructure Performance Checklist
- Load balancing: Proper algorithm selection, health checks
- Auto-scaling: Multi-metric scaling policies
- Container optimization: Resource limits, startup optimization
- Network optimization: CDN, compression, HTTP/2
- Storage optimization: SSD storage, backup strategies
- Monitoring: Comprehensive infrastructure monitoring
- Cost optimization: Right-sizing, reserved instances
- Disaster recovery: Performance impact assessment
Best Practices Summary
1. Measure First
Always establish baseline measurements before optimizing.
2. Optimize Bottlenecks
Focus on the biggest performance impact areas first.
3. Monitor Continuously
Set up comprehensive monitoring and alerting.
4. Test Performance Changes
Validate that optimizations actually improve performance.
5. Consider User Experience
Optimize for perceived performance, not just raw metrics.
6. Budget for Performance
Set performance budgets and stick to them.
7. Automate Optimization
Use tools and processes to maintain performance over time.
Remember: Premature optimization is the root of all evil, but deliberate performance engineering is essential for scalable applications. Always measure, optimize incrementally, and validate improvements.